
mDNS - A Proposal for Hierarchical Multicast Session

Directory Architecture

Piyush Harsh

CISE

University of Florida

Gainesville, Florida, USA

Richard Newman

CISE POB 116120

University of Florida

Gainesville, Florida 32611-6120 USA

Abstract Bandwidth in the Internet is constantly

increasing. The last mile problem of the Internet

has almost been solved. Multimedia has emerged

as a dominant type of traffic on the Internet. Mul-

ticast is increasingly seen as the delivery vehicle

of choice for multimedia streams. What has been

the one true stumbling roadblock in widespread use

of multicast is the lack of a convenient mecha-

nism for multicast session discovery. This paper

examines existing techniques that try to address

this issue, highlighting the benefits and drawbacks

of such schemes. It then proposes our hierarchi-

cal and globally scalable session directory archi-

tecture. An analysis of benefits and drawbacks of

our scheme follows. The paper concludes with ar-

guments why our scheme might be generally more

suitable for global deployment, which may allow

end users to enjoy the true power and efficiency

of IP multicast.

Keywords: Multicast, Internet Architecture, DNS, Re-

source Discovery, Scoping

1 Introduction

IP Multicast [1] is projected to be the vehicle of
choice for content delivery for rich multimedia ap-
plications in the near future. Even though Internet
average bandwidth is increasing and more homes are
gaining high speed access to the Internet, the infras-
tructure is not keeping up with demand for multime-
dia content; IP unicast simply can not handle a huge
subscriber base. With unicast, server and commu-
nication bandwidth requirements scale linearly with
each subscriber. Maintaining huge server farms can
become a costly proposition for organizations, and
increasing multimedia traffic can clog the network.
Multicast is an efficient answer to these increasing
demands.

Even though the time seems appropriate for
widespread deployment and use of IP Multicast, this
has not happened. In our opinion, the lack of a fa-
miliar and usable facility to enable its use is the sin-
gle most important reason for this. While DNS [2]
has many of the desired characteristics, using DNS
itself for multicast sessions information dissemina-
tion is inappropriate. Information stored in DNS is
relatively stable over long periods of time, whereas
multicast session information can be very dynamic;
with a few exceptions, multicast sessions are not long
term entities. There is a need for a multicast direc-
tory structure that is usable, scalable, and robust,
yet which can handle the dynamic multicast envi-
ronment.

Until now, the only way users could use Multicast
sessions was if they somehow knew the session details
beforehand. This has been accomplished via emails,
IRC channels, and blog postings. If multicast is to
become truly usable, a means must be devised for
users to obtain these critical session parameters on
the fly. Session parameter retrieval using URL-like
strings can bring us a giant step closer to this goal.

The remainder of this paper provides a summary
of current and past proposed solutions to the prob-
lems raised above. Next it provides the top-level
architectural layout of our proposed scheme. The
heart of the paper is a general URL construction
scheme for multicast sessions, with proposed addi-
tional parsing and translation rules, and query han-
dling infrastructure geared towards making multi-
cast more user-friendly, easily accessible, and prac-
tical. It then makes cautionary comments regarding
possible drawbacks in addition to the potential ben-
efits of our approach. This paper concludes with
possible future research directions and interesting
questions that still remain.



2 Existing Multicast Session

Directory Research

Session Directory tool - ‘sdr’ [3] - has been very
popular among Mbone [4] enthusiasts. It has been
used as a session management tool and is primar-
ily based on LBL’s Session Directory tool - ‘sd’. It
makes use of SDP - Session Description Protocol [5]
- to announce the critical characteristics of multi-
cast sessions such as channel address, port numbers,
timing and resource information needed for remote
hosts to join the session. It uses a well-known mul-
ticast channel address to propagate this information
over the Internet. It also maintains a cache of other
multicast sessions advertised elsewhere on the Inter-
net through sdr. Based on the cache information
maintained locally by each ‘sdr’ client, it tries to
assign a new channel address to requesting multi-
cast sessions in such a way as to reduce the address
collisions among different sessions. It is the gen-
eral consensus of the research community that even
though ‘sd’/‘sdr’ was a great technology demonstra-
tor, it is not globally scalable. All ‘sdr’ clients es-
sentially maintain a flat hierarchy on the Internet,
which makes information dissemination among dif-
ferent ‘sdr’ clients a challenging prospect, in addition
to make search difficult and using much storage.

Andrew Swan and team [6] at Berkeley developed
a completely decentralized session directory that
they incorporated as part of their Light-Weight mul-
timedia session framework. In this architecture they
advertise the multimedia session’s bindings at a well-
known bootstrap address using Sessions Announce-
ment Protocol [7]. To overcome the high latency
that plagues the multicast session directory archi-
tecture based on LBL’s ‘sd’ application and SAP an-
nouncement bandwidth limitations, they propose a
tiered announcement rate approach. The announce-
ment agents under the local scope announce session
advertisements at a much higher frequency than tra-
ditional SAP clients. They also propose splitting
the traditional SAP client into two parts: one per-
sistent server that runs SAP and caches all the net-
work SAP announcements heard over a long period
of time, and another ephemeral client that contacts
this persistent server for the cached list of available
sessions.

In [8] Joaquim and team analyze the use/misuse
of SDP as a session directory tool to advertise mul-
timedia sessions. They argue that the session direc-
tory information that is embedded inside SDP fields
is not standardized. Had it been standardized, these
fields such as “media,” “repeat time,” “time active,”

etc. might be used for aggregating sessions, which
could then be used later to query for sessions. They
propose that the user should not be burdened with
the task of browsing a flat structure; instead the
task could be assigned to a server. This informa-
tion could be presented to the user using either a
well-known multicast channel, or using several mul-
ticast channels, or possibly even using some specific
server database. The article did not specify to what
extent any of these proposed solutions were already
implemented or the current status of their work.

Another attempt at making a distributed infor-
mation discovery system on the Internet was Har-
vest [9]. This system was built using subsystems
such as gatherers, brokers, and replicators. Gather-
ers are placed at the resource site and manage local
resource data. Brokers collect data from gatherers
and incorporate this data in their resource index;
they further include index/search subsystems opti-
mized for space and/or search time. The system also
made use of replicators to copy the data over mul-
tiple sites in the Internet and place object caches at
critical sites to minimize the communication load on
the Internet. Instead of Harvest being truly hierar-
chical, we believe it is better characterized as a repli-
cated, Internet-wide cache, and is not entirely suit-
able to solve the multicast session discovery prob-
lem. It would be difficult to incorporate scoping and
session lifetime requirements within their proposed
framework. Moreover, the dynamic nature of most
multicast sessions would result in cache instability.

Researchers at UCLA have proposed a scalable
multicast information discovery graph (IDG) [10]
based on the semantic description of stored as well
as real-time multimedia content over the Internet.
This work is being done under the Sematic Multi-
cast project [11]. Even though their proposal pro-
vides for a hierarchical, semantic directory, it is not
truly distributed. They have proposed making use
of caching and soft state refreshes to make their sys-
tem more scalable and robust. In their approach, a
new multicast user may have to start searching at
a well-known root directory server, which is apt to
create a bottleneck as the number of sessions and
users grow. This scheme may also be problematic
in the face of stale caches and periodic cache re-
freshes. The semantic hierarchy in their proposal
currently is coarsely defined and may require sig-
nificant rework in order to account for the variety
of multimedia sources uploaded online these days.
The architecture does allow for much better search
time compared to LBL’s ‘sd’ tool, but its bandwidth
requirement grows linearly with the number of data



sources; this is clearly a source of concern. Also,
multicast scoping requirements are not mentioned
in the published work.

In [12], the authors propose building an anycast
SDP Proxy in order to give end-users immediate ac-
cess to session announcements. They propose an
architecture along with an HTTP-style protocol for-
mat to access session information as well as to create
a session entry at the remote SDP Proxy. This ap-
proach still suffers from the traditional ‘sdr’ issues of
non-scalability in the face of a large number of ses-
sions. Another issue with this approach is deploya-
bility over Source Specific Multicast (SSM [13])-only
networks.

In [14] the authors deal specifically with mul-
ticast session announcements over SSM networks.
They propose a two-tier hierarchy of dedicated ses-
sion announcement servers (SAS). They propose to
reduce the SAP-related delay by increasing the al-
lowed bandwidth limit of 4 kbps to 50 kbps for intra-
domain announcements. SAS servers located in the
backbone network of various ISP networks (Level 2
SAS servers) act as relays and do not cache any an-
nouncements. Simply increasing the intra-domain
bandwidth seems to be a nearsighted solution at
best. They state that whenever a new SAS Level
2 server is added in the ISP’s backbone network,
the ISP discovers the address of other Level 2 SAS
servers and this information is configured into the
new server. However, their paper does not mention
how this is achieved, or whether the configuration is
manual or automatic.

3 DNS-aware Multicast Ses-

sion Directory Architecture

This section describes our proposed globally scal-
able, multicast session directory architecture. It is
designed on principles similar to those behind do-
main name server (DNS), and is intended to satisfy
requirements for

• usability,

• robustness,

• scalability, and

• maintainability.

We first provide terminology that we will use in the
rest of this section.

• MSDy
x - Multicast Session Directory (MSD)

server ‘y’ in domain ‘x’

• MSDd
x - Designated MSD Server in domain ‘x’

• DNSx - Domain Name Server for domain ‘x’

• URSx - URL registration server in domain ‘x’

We assume that each domain knows its DNS server
address, and DNS servers know their parent DNS
server’s address, which we believe is a reasonable
assumption. For global discoverability of multicast
sessions, we assume that at least one MSD server
coexists with the DNS server at each domain level.
Failure to do so may result in disconnected islands of
session discovery zones in the global Internet (which
actually may be desired in some cases). We pro-
pose to make an additional entry into DNS server’s
record table. We call this entry an MCAST record,
and it contains such details as the ‘anycast IP ad-
dress’ [15] for MSD servers in that domain, globally
scoped multicast channel details for establishing a
multicast group with the designated MSD server of
a particular domain, addresses of designated MSD
servers in the children subnets, the globally scoped
multicast channel details for establishing a multicast
group with the designated MSD server of that par-
ticular domain, and the address of the designated
MSD server in the parent’s domain. Additionally
it may contain the address of a URS server in its
domain. An example DNS MCAST record entry is
shown below.

@MCAST{

ANYCAST=a.b.c.d

CMCAST=233.[ASN Byte1].[ASN Byte2].XXX

PMCAST=233.[ASN Byte1].[ASN Byte2].???

PORT=pqrs

URS=x.y.z.w

}

Here, ASN denotes the AS (Autonomous System)
Number. Note that this example is just for illustra-
tive purposes, and an actual DNS entry must fol-
low the correct DNS entry format. Notice that we
have suggested the use of globally scoped addresses
from the GLOP [16] address range. These address
are assigned by the ISPs, and the domain own-
ers/administrators must apply for these addresses
from their ISPs. The system has been designed to
co-exist with our HOMA [17] multicast address al-
location and management scheme.

3.1 mDNS Hierarchy Construction

This section describes the hierarchy of our scheme
through two example partial networks, namely .edu
hierarchy network and a general hypothetical ISP
network. Our scheme will work with any network
organization scheme as long as our initial DNS server
and MSD server assumptions remain valid. A typical
example is shown in figure 1.



Figure 1: A typical MSD hierarchy

Now we explain the proposed mDNS hierarchi-
cal architecture in some detail. First consider the
(partial) .edu hierarchy. Under the .edu domain
are two university networks. Under the UF net-
work are two sub-domains, namely CISE and ECE;
each of these is an independent, administratively-
scoped multicast domain. Furthermore, UF is also
an administratively-scoped domain. CISE and ECE
each maintain their own DNS servers, whose parent
DNS server is the DNSUF server. DNSUF server
is a child node of the TLD DNS.edu Server. UF
maintains multiple MSDUF servers, all of which
subscribe to a fixed (possibly IANA assigned) ad-
ministratively scoped multicast channel. From here
on we will refer to this channel as the MSD-
LOCAL-MCAST channel. CISE and ECE also
maintain their own sets of MSDCISE and MSDECE

servers, and again these subscribe to the MSD-
LOCAL-MCAST channel. Since this channel is an
administratively-scoped channel, there should be no
cross-talk among these channels (assuming the edge
routers are properly configured). If there are multi-
ple MSD servers maintained under a domain, a des-
ignated MSD server is chosen based on some leader
election algorithm [18] [19]. In figure 2, these are
marked with the letter ‘D’ next to them. The desig-
nated MSDd server joins two globally scoped mul-
ticast channels, namely those specified by the CM-
CAST and the PMCAST entries in the MCAST
record of the DNS server in their domain. If either of
these two entries is NULL, the server does not sub-
scribe to that particular channel. It is important to
note that all the MSD servers in any particular do-
main (excluding child subdomains) are anycasted at
the anycast IP address specified in the DNS server’s
MCAST record.

Figure 2: An example .edu hierarchy

MSD Server’s Base Algorithm
join MSD-LOCAL-MCAST channel
initiate leader election on this chanel
if elected leader then

query local DNS server for PMCAST and CM-
CAST
join PMCAST and CMCAST channels

end if.
This is how the MSD servers’ hierarchical structure
is established in the mDNS architecture. It is quite
easy to see that the hierarchy will exist as long as the
initial two assumptions are satisfied in any network
domain hierarchy.

3.2 Session Registration in mDNS

mDNS architecture has been designed to work with
with our HOMA [17] proposal for multicast address
allocation. We assume that an application in any
domain has had an appropriate multicast channel
address allotted to it before transmitting multicast
traffic (in any scope). While this paper does not
provide details on the internal database maintained
at each MSD server, let us posit that MSD servers
are capable of registering channel keywords along
with channel details on behalf of multicast applica-
tions. It is the responsibility of the session creator



to provide a limited number of keywords correctly
describing the session when registering. These key-
words will aid in the session discovery process de-
scribed later.

An application under the mDNS architecture, af-
ter it has acquired a valid channel address, will exe-
cute the following pseudocode.

Session Registration Pseudocode
contact local DNS Server to find URS address
if URS server exist then

request URS server to register a channel de-
scriptive ‘keyword’
if keyword registration at URS successful then

done.
else

pick another keyword
try again

end if

end if

initiate channel registration request on the MSD-
LOCAL-MCAST
register the channel details with MSD server
provide list of keywords (max upto 10)
provide session duration and operating times
provide URS registerd ‘keyword’ if any

.
The MSD server will correctly identify the scope of
the multicast channel based on the channel address
with which it is registered.

3.3 mDNS Search Operation

Multicast sessions in mDNS can be searched using
session keywords. Sessions can also be accessed di-
rectly if the session creator successfully registered a
valid ‘keyword’ with the domain’s URS server. We
propose a simple URL scheme in order to facilitate
multicast channel details access in order for the re-
mote host to sunscribe to that particular channel
on the Internet under the mDNS architecture. We
believe that having an URL scheme will greatly en-
hance the usability of IP-multicast and would enable
it to reach its fullest potential rapidly.

mDNS URL is constructed using the following
syntax.

<protocol>://<domain URL>/<URS Keyword>

In the above URL scheme, ‘protocol’ is the method
the remote user will use to communicate with the
MSD server defined in the DNS MCAST record. It
could be HTTP or a similar protocol. The domain
URL helps resolve the MSD server located in the
multicast session creator domain. It must begin with
‘mcast’ to specify the MSD server. For example, let
us assume that under the cise.ufl.edu sub-domain,

we have created a globally scoped multicast chan-
nel that multicasts information about gators. Fur-
ther assume we have successfully registered the key-
word ‘gators’ with the URSCISE server located in
the CISE domain. Someone else can then directly
access the multicast session details to subscribe to
the gator channel using this URL:

http://mcast.cise.ufl.edu/gators

The search is done in a very similar fashion. Un-
der mDNS, a user can do a domain-specific search
or a general global search. If the user wishes to do
a domain-specific search, s/he can specify the spe-
cific domain to search for a particular keyword in
the same fashion as shown above, but now using the
qualifiers ‘search’ and ‘keyword’ in the URL. For ex-
ample, if the user wishes to find sessions with key-
word ‘gators’ under the cise.ufl.edu domain, they can
do so by using the following string.

mcast.cise.ufl.edu/search=all&keyword=gators

The end user’s multicast search application first re-
solves the mcast.cise.ufl.edu anycast address and
then connects to one of the MSDCISE servers
located in the cise.ufl.edu domain. MSD servers
then perform a database search against the key-
word ‘gators’ and every content type. Content type
could be audio, video, text, image, whiteboard, etc.
Search is performed in a top-down hierarchy start-
ing from the domain specified in the search URL
and percolating down to all sub-domains (if any ex-
ist). In our present scheme, the search results are
returned from MSD servers at each level directly to
the requesting client. There are a few other delivery
schemes we are considering described in the future
research section. The MSD servers are smart in the
sense that they recognize whether the query comes
from a host inside their domain or outside it. If the
querier is located outside the MSD domain, the MSD
returns only those search results for globally scoped
channels. Administratively scoped sessions are only
returned if the querier resides in the same domain.

Additionally any user can choose to perform a
global keyword search. In order to do this, the
client must contact the local MSD server co-located
in the same zone as its DNS server. Global search
is propagated by the MSD servers on both PM-
CAST and CMCAST channels, as well as its own
MSD-LOCAL-MCAST channel, thereby spreading
the search to both child domains as well as par-
ent domain. The propagated search request con-
tains a uniquely identifying string that allows the
originator MSD to kill the search if the same query
id comes again to the same MSD server. Also the
search query based on the identifying string is never



re-propagated on the same channel on which it was
received. It is easy to see that in the proposed mDNS
architecture, this uniquely identifying search id will
be generated by the designated MSD server at each
level and only when the search query was received
on the MSD-LOCAL-MCAST channel.

Pseudocode for search executed at each MSD
server is given below.

MSD Pseudocode for Search
received search query on subscribed channels
search sessions internal database for search match
if multicast sessions found then

if querist resides in another domain then

return only globally scoped session details (if
any)

else

return every result found directly to the
querist

end if

end if

if MSD server is a designated MSD server then

if search unique ID is missing then

generate unique search ID
end if

if query request was not received on CMCAST
channel then

propagate search on CMCAST channel
end if

if search is global in nature then

if query request was not received on PM-
CAST channel then

propagate search on PMCAST channel
end if

end if

if search query has self generated previous ID
then

drop search request
end if

end if

3.4 Search Example

Here we show an example hierarchy to demonstrate
how a search operation is performed in mDNS.

Assume a global search is initiated by an end
host at the only subnet in the Sun network. The
search goes to the only MSDSUNsubnet

server in the
subnet, which is also the designated MSD server.
The MSDd

SUNsubnet
server searches its local session

database and returns all the hits to the requesting
host’s application.

The designated MSDd
SUNsubnet

server then gen-
erates a unique search query ID and propagates the
search to both CMCAST and PMCAST channels.

Figure 3: A general mDNS hierarchy

In this example network, the CMCAST channel does
not exist for the SUN internal subnet, so the search
is propagated only on PMCAST channel (dash dot
dot dash line).

When the query reaches the Sun network-
wide MSDSUN server, this outer MSDSUN server
searches its internal sessions database. Since the
search came from a subnet host and not from a co-
existing host, it only returns those results that are
global in scope. MSDd

SUN propagates the search on
the PMCAST channel (dotted line).

Now the search query reaches the MSD servers
in the IBM, Yahoo, and the ISP’s TLD MSD server
(i.e., MSDd

IBM , MSDd
Y ahoo, and MSDd

ISP ). They
all process the query using the same search algo-
rithm and the process continues.

In the example scenario here, if the only SUN sub-
net has additional sub-subnets under it, the search
query would have propagated on the CMCAST
channel and thus would have propagated down the
hierarchy as well. This is how the query eventually
propagates to all MSD servers in the mDNS archi-
tecture.

4 Analysis of mDNS

We believe that mDNS has features to take IP-
Multicast to the next level of deployment and use
in the general consumer network. Together with the
HOMA [17] system for multicast address allocation,
mDNS has true potential to make multicast session
discovery and deployment seamless and consumer
friendly. Use of the mDNS URL scheme presented



in section 3 makes bookmarking of popular multi-
cast sessions feasible and as user friendly as webpage
bookmarks are currently.

However, mDNS is still in its early development
stages, and has certain drawbacks in its current
form. It is particularly vulnerable to DoS attacks.
Also, each global query has the potential to acti-
vate every MSD server deployed under the mDNS
scheme. Furthermore, direct query results transmis-
sion to the querier from MSD servers creates the
possibility of Smurf [20] attack on some remote host
on the Internet using IP spoofing.

There are several immediate benefits of the
mDNS scheme. First is the database space savings.
In LBL’s sd and later sdr software implementation,
possibly every sdr client may cache session details
in the software’s local cache. This makes the sdr
scheme particularly difficult to scale. In mDNS, only
the leaf subnet’s/domain’s MSD server in the hier-
archy maintains the multicast session database. La-
tency is also improved, as the receiver application
does not have to wait 10s of minutes to discover a
session because of SDP’s global bandwidth usage re-
striction. We conjecture that session search and dis-
covery in mDNS scheme should be many orders of
magnitude faster than current schemes. Benefits of
URLs have already been discussed earlier.

5 Future Research

We are also considering a subscription-based ap-
proach where each MSD client, in addition to main-
taining a locally residing session source database,
also maintains keywords subscription level by hosts
in its subnet/domain. We are devising a threshold-
based system to propagate the keyword subscription
up the mDNS hierarchy.

A major concern is activation of every MSD server
in the mDNS scheme for every global search. This
could prove to be very taxing on MSD servers. We
are considering intelligent cache placements schemes
along with smart caching techniques in order to re-
duce the possible workload on MSD servers.

Security remains a major concern in any dis-
tributed deployment in the Internet today. mDNS in
its current form is vulnerable to various attacks. We
are studying threats to mDNS and possible solutions
to thwart identified attacks.

This paper provides a very high level description
of the mDNS architecture. Design of protocol mes-
sage formats and database records structure are not
yet complete. We are in the process of implementing
a prototype system to provide hands-on experience

with mDNS. The prototype will also allow us to an-
alyze the real stress levels on MSD servers.

References

[1] S. E. Deering. “Multicast routing in internetworks and ex-
tended LANs”; SIGCOMM ’88: Symposium on Communica-
tions architectures and protocols, 55-64, 1998.

[2] P. Mockapetris and K. J. Dunlap. “Development of the do-
main name system”; SIGCOMM Comput. Commun. Rev.
18:4, 123-133, 1988.

[3] M. Handley. “The sdr session directory: An Mbone
conference scheduling and booking system”; http://www-
mice.cs.ucl.ac.uk/multimedia/software/sdr/, April, 1996.

[4] Almeroth, K.C. “The evolution of multicast: from the
MBone to interdomain multicast to Internet2 deployment”;
Network 14:1, 10-20, Jan/Feb 2000.

[5] M. Handley and V. Jacobson. “SDP: Session Description
Protoco”; Internet Draft (IETF), September 1997.

[6] A. Swan, S. McCanne, and L. A. Rowe. “Layered Trans-
mission and Caching for the Multicast Session Directory ser-
vice”; Multimedia, 119-128, 1998.

[7] M. Handley, C. Perkins, and E. Whelan. “Session Announce-
ment Protocol”; RFC 2974, 2000.

[8] A. Santos, J. Macedo, and V. Freitas. “To-
wards Multicast Session Directory Services,”
http://citeseer.ist.psu.edu/264612.html (April 2008).

[9] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and
M. F. Schwartz. “The Harvest information discovery and ac-
cess system”; Computer Networks and ISDN Systems 28:12,
119-125, December 1995.

[10] N. R. Sturtevant, N. Tang, and L. Zhang. “The Information
Discovery Graph: towards a scalable multimedia resource di-
rectory”; IEEE Workshop on Internet Applications, 72-79,
August 1999.

[11] “Semantic Multicast project”; Web Resource:
http://www.wins.hrl.com/projects/semcast/.

[12] P. Liefooghe and M. Goosens. “The Next Generation IP
Multicast Session Directory”; SCI, Orlando FL, July 2003.

[13] H. Holbrook and B. Cain. “Source-Specific Multicast for
IP”; Work in progress (IETF), October 2003.

[14] P. Namburi and K. Sarac. “Multicast session announce-
ments on top of SSM”; 2004 IEEE International Conference
on Communications, 1446-1450, June 2004.

[15] C. Metz. “IP anycast point-to-(any) point communication”;
Internet Computing 6:2, 94-98, March/April 2002.

[16] D. Meyer and P. Lothberg. “GLOP Addressing in 233/8”;
RFC 3180, 2001.

[17] P. Harsh and R. Newman. “An Overlay Solution TO
IP-Multicast Address Collision Prevention”; IASTED Eu-
roIMSA, March 2008.

[18] M. Mirakhorli, A. A. Sharifloo, and M. Abbaspour. “A
Novel Method for Leader Election Algorithm”; CIT ’07: 7th
IEEE International Conference on Computer and Informa-
tion Technology 452-456, 2007.

[19] S. Dolev, A. Israeli, and S. Moran. “Uniform Dynamic Self-
Stabilizing Leader Election”; IEEE Trans. Parallel Distrib.
Syst 8:4, 424-440, 1997.

[20] C. A. Huegen. “The Latest in Denial of Ser-
vice Attacks: ”Smurfing” Description and Information
to minimize effects”; http://www.pentics.net/denial-of-
service/white-papers/smurf.cgi (May 2008).


